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Abstract

In recent years the Artificial Inteiligence research group
atthe University of New Mexico have considered several
areas of problem solving in interesting and complex
domains. These areas have ranged from the low level
explorations of a robot tasked to explore, map, and use a
new environment to the development of very sophisti-
cated control algorithms for the optimal use of particle
beam accelerators. Although the results of our research
have been reflected in computer-based problem solvers,
such as the robot discovering and mapping out its world,
these computational tasks are in many ways similar to
expert human performance in similar tasks. In fact, in
many important ways our computer-based approach
mimics human expert performance in such domains.
This paper describes three of these task domains as well
as the software algorithms that have achieved compe-
tent performances therein. We conclude this paper with
some comments on how software models of a domain
can elucidate aspects of intellectual performance within
that context. Furthermore, we demonstrate how explora-
tory problern solving along with model refinement algo-

rithms can support a constructivist epistemology.
Copyright ©2002°S, Karger AG, Basal

Introduction

We often find ourselves struggling for a definition of,
or explanation for, expert problem solving performance,
of expertise practiced in context. We may even find our-
selves reluctant to use terms such as ‘intefligence’ o1 "ex-
pert problem solving’ to describe the actions of dolphins,
non-human primates, colonjes of bees, or even simple
human performance. However, these agents demonstrate
extraordinary competence in coping with and utilizing
their environments to perform sophisticated tasks.

In this paper we present three examples of this expert
Jevel problem solving performance. Our tasks, however,
will be performed by computer-based problem solvers: a
robot exploring and mapping its world, a computer-based
diagnostic reasoning system for finding failures for dis-
crete component semiconductors, and a contro! system
for a particie beam accelerator. We will describe each of
these computational problem solvers in sufficient detail
to give an apprecjation for how the tasks are addressed,
and the sense in which they can be considered solved.

The approach we have taken in these tasks is based on
what we call exploration and model building with itera-
sive refinement. The supporting intuition here is simple:
the problem solving agent, through exploring its domain,
makes a preliminary modef of its problem solving situa-
tion and then refines or clarifies that model as it discovers
new relevant information in the process of accomplishing
its tasks. A number of questions arise immediately. What
is the nature of this so-called model? What are 1ts salient
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dimensions? How does a model change or mature in the
process of its use? How can a model be seen as good
enough to satisfy the constraints of the task at hand? We
answer these questions in the contexts of each of our
examples.

There is, we feel, an important generalization of our
research approach. One may ask the question of how any
agent, whether insect, bird, primate, human primate, or
computational, interacts with and uses its environment to
survive, including an integration into its social structure.
We do not claim that our approach is valid across all the
multiple forms of intelligence we might envision, but
rather that it does offer a possible response to the ‘episte-
mological’ problem of how an agent might be able to
know, interact with, and survive in its world.

Epistemology, taken from the Greek word smotmue
(episteme), is the study of the nature and use of knowledge
or of how an agent can comprehend and is able to survive
within its environment. Epistemology includes the very
simple issues, including the existence of an extra-subject
‘outside’ world, the reality of that ‘outside’ world, includ-
ing the reality of other agents, and the use of both the
world and other agents to support its survival. Epistemo-

logical ‘access’ asks in what sense an agent can compre-

hend how it knows its world. How or in what manner is
the world, in fact, knowable? Is it directly and immediate-
ly perceived and just ‘out there’? What is the reality of an
agent’s thoughts about knowing its world? And thus, what
is the status in ‘what is real’ of an agent’s thoughts about
its thoughts about its world?

These are exciting questions, and most appropriate for
our understanding of intelligence whether human, non-
human, or computational. Before we address these issues
further, we would like to present three of our research
group’s projects in computational intelligence. We feel
that the model building and refinement approach we have
taken in each of these projects addresses the issue of epis-
temological access as well as supports the viability of a
constructivist epistemology, but we will wait for the final
section of this paper to discuss these issues further.

Three Examples of Computational Intelligence

We next present three research projects in computa-
tional ‘intelligence’. There are several general questions
that each of these projects addresses. These include how
and what external information does the agent perceive,
what aspects of the perceived information are interpreted
and encoded for further use by the agent, and how can this
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agent information be said to be good enough for its further
use in problem solving?

The Robot Agent for Exploring and Mapping

The traditional [before 1990; see Brooks, 1989] ap-
proach that the artificial intelligence community has tak-
en to robotics was to create for the robot-based computer
problem solver a detailed description of iis environment.
Thus, the robot designed to move around a room might
have the length, width, height, color, and location of
tables, chairs and other entities in its world. It would have
an exact location for walls and doorways, for obstacles to
avoid, as well as for the important parameters of the tasks
1t was to perform. This world was often represented by the
predicate calculus (a mathematics-based description lan-
guage), with the logic of its moves determined by a theo-
rem prover [see the SHAKEY research and STRIPS;
Fikes and Nilsson, 1971; Fikes et al., 1572].

The knowledge that drove these early systems was pre-
cise, and as a result, often unforgiving. These Al robot
designers took a distinctly ‘rationalist’ approach, wiih
complete detail for the problem domain worked out in an
a priori and pre-interpreted fashion, based on the often
anthropocentric biases of its designer. When it was ac-
knowledged that the very actions of the robot could
change - and even, by happenstance, perturb — the envi-
ronment it which it operated, new frame axioms, non
monotonic logics, and truth maintenance systems
fMcCarthy, 1977; Doyle, 1979} were introduced in an
attempt to “save’ this rationalist perspective of the world.

In the early 1990s, Brooks’ [1989, 1991} research at
MIT offered an alternative computational model for ro-
bots, the ‘subsumption’ architecture. In this approach,
Brooks layerad together independent systems for interact-
ing with the world. Figure 1 offers an example of suck a
system, where an object avoidance layer supports higher-
level competencies for exploring an environment and
planning tasks within it. Brooks ¢laims that the approach
of his system is to ‘wire finite state machines together into
layers of control. Each layer is built on top of existing
layers. Lower level layers never rely on the existence of
higher level layers’. For Brooks, this offers the possibility
of a control system without representation. In fact Brooks
claims, “‘When we examine very simple levels of intelli-
gence we find that explicit representations and models of
the world simply get in the way. It turns out to be better to
use the world as its own model’ [Brooks, 1991].

Brooks’ approach of “intelligence without representa-
tion’ is certainly at the opposite extreme of the epistemo-
logical spectrum from its logic-based predecessors pre-
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Fig. 1. The interactions within and between layers of the subsumption architecture generate an overall reaction to sensory

input from the environment [from Lewis, 2001].

sented earlier. Unfortunately, Brooks’ and others” more
recent work has not born out the earlier promise of this
approach [Brooks and Stein, 1994; McGonigle, 1998;
Lewis and Luger, 2000]; and yet it is important to appre-
ciate what contributions were made. Certainly we can see

“that intelligence is dynamic and operating in a fluid
domain. We also know that the world offers scaffolding
[Clark, 1997} for operations where tasks are indexed and
partial solutions can be recorded and saved for later use.
But even these aspects of problem soiving would seem to
require their correlated representational components for
the agent.

Several research groups [Moravec, 1988; Thrun, 1998,
2000; Lewis and Luger, 2000; Lewis, 2001] are now offer-
ing hvbrid representational schemes that can, through
interaction with a domain, capture and represent invar-
lances within that context. We call our project ‘Madcat’
(mad from the trade name of the Nomad robot, and cat
because we have extended the earlier Copycat work of
Mitchell, 1993]. Madcat is a hybrid representational
scheme for controlling a robot; the Madcat architecture
produces an evolving representation that maps out its
world as it explores that world for later use in problem
solving.

Madcat is an example of a cognitive architecture which
means that it is an attempt to capture the full cognitive

Problem Solving as Mode! Refinement

functioning of an agent [Luger, 1994]. This functioning
includes the input of its perceptions, through their inter-
pretation and integration into the agent’s memory siruc-
tures, as well as the further use of this acquired informa-
tion/knowledge to achieve the agent’s goals. Thus, the task
in building a cognitive architecture is to create, in soft-
ware, a fully functioning cognitive agent, in our case, a
robot. A number of other cognitive architectures, includ-
ing those of SOAR [Newell, 1990}, ACT* [Anderson,
1983], and Copycat [Mitchell, 1993; Hofstadter, 1995]
have preceded the Madcat work [Lewis, 2001].

The Madcat perceptual system includes a sef of sixteen
sonar sensors fixed at uniform distances around its circu-
lar base. Figure 2 presents the Madcat robot with its six-
teen sensors and an example set of its input snapshots.
The processing of these snapshots produces an evolving
representation cailed the mapnet. The mapnet (figure 3)
reflects both the robot’s perceptions at a particular time
combined with its a priori expectations of patterns within
and between these sets of perceptions.

The full Madcat architecture is presented in figure 4.
Sequences of snapshots like those of figure 2 are inte-
grated over time within the workspace. The relationships
within elements of each snapshot as well as the correspon-
dences of relationships between consecutive sets of snap-
shots are identified in this workspace.

Brain Behav Evol 2002;59:87-100 89
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Fig. 2. Represeniational structures develop around input measurements from a single snapshot with the

sonar sensors [from Lewis, 2001].

Fig. 3. Mapnet features, corresponding to
perceived surfaces in the environment, are
constructed based on patterns among struc-
tures within and between snapshots [from

Lewis, 20011

The coderack contains the pattern matching rules for
exploring and directing the overall behavior of the robot
system. Currently there are two components of the
coderack, the first containing rules to build the relational
structures within and between snapshots and the second
containing rules to organize movement of the robot itself.
The feedback mechanisms of the system select which type

90 Brain Behav Evol 2002;39:87-100

of coderack codelet is to be used next, depending on the
robot’s context. For example, when a current snapshot
indicates that walls and other surfaces are too close to the
robot, appropriate survival mechanisms are chosen. At
other times the robot has more latitude to search, as pre-
scribed by the sliprer, for interesting patterns in its per-

ceptions.

Luger/Lewis/Stern
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The slipnet is divided into three components, each con-
taining rules embodied in an activation-varying network
of nodes. These nodes correspond, loosely, to domain-rel-
evant concepts. The first component’s nodes, reset with
every snapshot, relate the components of the spatial rela-
tionships within each individual snapshot. Rules for find-
ing patterns of relationships between consecutive snap-
shots are embodied in the second component’s nodes,
which are reset periodically, as the robot moves through
the cells of its mapped space. These rules give the system
an understanding of possible temporal relationships be-
tween snapshots and support the recognition of persistent
patterns corresponding to features of the environment.
Finally, there are nodes that are persistent and that embo-
dy rules for adding features to the developing mapnet.
These features, in turmn, assist in guiding the higher level
behavior of the robot (seen in the coderack described
above).

The coherence measure of Madcat reflects how ‘com-
fortably’ the current structures in the workspace fit togeth-

Problem Solving as Model Refinement

er. In an intuitive sense, the cohierence measure indicates
the confidence of the system with its current interpreta-
tion of the world, reflected of course, through its attempts
to interpret its perceptions through feedback from gener-
ated behavior. A close analogue is the notion of entropy in
physics, the measure of the disorder of a system. The
coherence measure can be used to mediate the delivery of
goal-driven behavior, reflecting the notion of ‘satisficing’
as originally proposed by Simon [1969]. That is, it offers a
measure according to which a system can decide, in the
context of its full set of needs and processing capacities,
when a possible action is good enough for accomplishing a
task.

Onee Madcat explores its world situation, organized
and enabled by the rules of the coderack and slipnet, the
mapnet reflects and encodes the results. As an example,
the grid patterns in mapnet, after the successful naviga-
tion of a complex corridor, can be seen in figure 5.

To summarize, the Madcat robot is able to create a ten-
tative map of its world as it explores that world. The snap-
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Fig. 5. An environmental configuration
provides the goal-directing feedback for the
robot; and the generated mapne! features
demonstrate a sparse representation just
sufficient to produce smooib navigation
[from Lewis, 2001].

shots of input sonar signals are compared and similar
structures linked together by the rule patterns of the s/ip-
net. The application of these rules is mediated by the
coderack as appropriate for each sitnation. The system’s
coherence measure indicates how satisfied it is with its
current interpretation of its domain. A natural extension
of this approach would be to use the coherence measure to
modulate the goal driven activity of the robot agent, ie.,
to indicate when a particular interpretation is good
enough for its goal driven purposes. These purposes might
include determining, for example, whether a structure is
suitable for following (a wall) or is sufficient for going
through (an entryway), as it moves around its domain.
Thus, the good enough measure can organize the system’s
current goal within the larger context of multiple goals,
including object avoidance, exploration, and even re-
charging its batteries.

A Diagnostic Expert

One view of the exploring robot of the previous section
is to see it as an agent trying to determine minimum infor-
mation/knowledge for mapping out and getting around in
its world. This would be much like a blind person explor-
ing unknown territory using very limited sensory inpus,
for example, a cane to ‘feel’ obstructions. There would be
10 easy recognition of things in the every day world such
as walls, corners of a room, or doorknobs. These fixtures
of a normal world for humans must be ‘discovered’ and
‘cataloged’ for later use by the robot. Our second example
is a further instance of exploratory reasoning, this time in
the task of diagnosing and explaining failure patterns of
discrete component semiconductors.

92 Brain Behav Evol 2002;59:87-100

Fig. 6. An example of a semiconductor failure, indicated by the
arrow. The failure mode is an electrical ‘open’, the type of failure is a
‘fracture’, and the explanation is some type of “mechanical stress’.

Failure explanation requires an expert not just to note
that some aspect of a device is not as it should be, but also
to explain how it got that way. Figure 6 presents such a
failure. In this situation there is an electrical break — an
‘open’ — indicated by the arrow. The cause of the breakis a
broken wire. The type of break is a fracture. The cause of
the fracture is most likely mechanical stress. We can now
ask how this mechanical stress might have occurred. An
answer might be from the improper packing of the device
or from the connecting of it into other components, or
through some other human mishandling.

Human experts are trained to make these types of diag-
noses. The usual training includes several courses in elec-

Luger/Lewis/Stern



”

tronics and their associated lab sessions. The expert diag-
nosticians in the electronics domain also often have years
of experience seeing and testing actual failed devices. As
with human doctors, the final levels of expertise are
achieved only through much practice-based experience.

We have built two computer-based solutions for ex- -

plaining failures in situations such as that of figure 6.
These systems were built after many hours of interviewing
human experts in the area of failure analysis for discrete
component semiconductors (Discrete component semi-
conductors are individual devices, such as a transistor or
resistor, that are linked together to perform some func-
tion, such as to add numbers.) The first system was in the
form of a traditional rule-based expert system [Stern,
1996; Stern and Luger, 1997]. This system was intended
to assist the human expert in explaining failures and
searched through sets of related explanations based on the
data it encountered. T '

The traditional rule-based system is made up of (often
hundreds of) related if - then rules. For example, if you see
pattern X then look for pattern Y. If you find pattern Y
then check possibility Z. These individual rules, as they
are used, will ‘chain’ together. In the example above,
when the expert sees pattern X, and as a result looks for
and finds pattern Y, then possibility Z is checked. Thus
patterns of data are noted in the failure situation, which
direct the organized search through different lines of rea-
soning that can lead to different possible solutions. This
type of reasoning;;bften called ‘abductive’, goes from dif-
ferent sets of observable pieces of data to determine the
best possible explanation for that data [Peirce, 1958].

Actually, the relationship between data and explana-
tion is very much two-way. The input data shapes the
search in terms of possible explanations, while the partic-
ular explanation under consideration shapes the search
space by suggesting possibilities for acquiring new data.
When human experts search for explanations whatever
they see shapes what they expect, while at the same time
what they expect drives the search for and interpretation
of new pieces of data. All this may be captured in a care-
fully designed rule system.

Qur approach to diagnosis also demonstrates how one
piece of information can be interpreted differently in the
contexts of different explanation scenartos. This situation
is captured in figure 7, where individual pieces of data can
support different explanations, and at the same time sup-
port of the explanation contexts can suggest/require ob-
taining different new pieces of information. In figure 7 the
data of ‘“traffic slowing down’ can be interpreted as either
‘road construction’ or ‘accident” ahead. Further data (see-
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Fig. 7. A representation belief patterns for the ‘Bad Traffic’ prob-
lem.

ing orange traffic control barrels or flashing lights) can
suggest one of these explanations as ‘best’ [Luger, 2002].

Our expert diagnostic system was built with many
hours of cooperation from human diagnostic experts. The
search paths that the program took were intended io be
much the same as those the well-trained human expert
took in looking at these same problems. In its usual mode
of operation it was used alongside the expert, suggesting
possible explanations of data, as well as proposing new
pieces of information that should be sought to confirm
possible explanations. Furthermore, the program could be
seen as a methodology for preserving aspects of human
skilled problem solving, when the human diagnostic ex-
pert might no longer be available.

Our second attempt at capturing the expertise involved
in the diagnosis of discrete component semiconductors
was with a Bayesian belief network (Bbn). An example
Bbn for ‘leaking transistors’ can be seen in figure 8.

In this belief network we took some of the same infor-
mation captured in our rule system and gave it a different
representation. A Bayesian belief network is an example
of a stochastic reasoning system. The.nodes in figure 8
represent several aspects of a diagnostic situation. First
there are the data nodes, the clear nodes of figure &, that
reflect the likelihood of a piece of data being present or
absent in a certain situation. Second, we have nodes for
possible explanations, the shaded nodes of figure 8. Final-
ly, in some Bbns there can be ‘utility’ nodes that reflect the
cost of different lines of reasoning. For example, if acquir-
ing one piece of data has a very high cost, the expert sys-
tem might not use that line of reasoning until other
approaches have already been explored.

In 2 stochastic model, the nodes of the system are
linked together by a measure of how often the phenomena
they represent occur together in the natural world. In fig-
ure 7, for example, the ‘traffic slowdown’ might happen
for an ‘accident’ 0.75 of the time and for ‘road work’ 0.25.

Brain Behav Evol 2002;59:87-100 93
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possible explanations. The direction of the arrow indicates the relationship between pairs of nodes.

In a similar fashion all the nodes in the Bbn are linked by
a measure (the a priori probability) of how often the phe-
nomena they represent happen together in the natural
world. In this sense the Bbn representation need not be
created by the collected knowledge of several human
experts, rather it is simply the reflected measures of co-
occurring data, regardless of how these relationships are
captured. In a natural sense, the Bayesian network reflects
what the expert sees and expects when looking at a prob-

94 Brain Behav Evol 2002;59:87-100

lem situation. The full sets of collected information and
their co-relations offer a snapshot of the world as it is.

As described so far the Bbn offers a static view of the
natural world; but its power extends much further. First,
when new pieces of information are acquired (¢ posteriori
knowledge) and added to the Bbn representation, the co-
relations in the network change to reflect the best explana-
tions for this new information. For example, in the situa-
tion of figure 7, the presence of flashing lights changes our

Luger/Lewis/Stern
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Fig. 9. A graphic representation of an accelerator beamline. The magnets steer and focus the beam by guiding and
changing the direction of the particles. Monitors, such as the Faraday cup, measure the beam’s strength and profile.

expectation of an accident. Second, when new goals are
identified, the system indicates which pieces of new infor-
mation are the most important to consider for support of
these goals. Finally, and our current system does not yet
do this, the Bbn representation is capable of learning new
co-relations of the data as it acquires further experience
within its application domain.

In this section we have presented two different compu-
tational models for representing expert human diagnostic
problem solving performance. The first, the rule-based
expert system, is often used to create an explicit web of
reasoning rules that reflect the arguments and decisions
taken by the hun';;‘an expert. These rule systems are usually
constructed through many hours of interviewing and test-
ing in conjunction with the human expert. Even though
these systems can be ‘brittle’ in that they sometimes mis-
represent the precise data observations and calculations
of the expert, they can be further calibrated as their fail-
ures are observed. This progressive approximation seems
to reflect how humans come o understand a problem
domain. Thus, rule systems can offer a very powerful
approximation of human expert performance [Luger,
1994, 20021,

The Bayesian belief network, either through direct
learning of the co-relations in a problem domain or
through explicit programming, comes to reflect the g prio-
ri expectations of the ‘causal’ relations of the problem sit-
uation. As new data are added, or the support for some
goal is queried, the dynamic reconfiguration of the net-
work reflects causal contingencies in the natural world, a
characterization of how things ‘are’. In our continuing
research in this area we are creating a general representa-
tional scheme for capturing stochastic relationships as
well as general purpose mferencing algorithms to capture

Problem Solving as Model Refinement

and calibrate new a posteriori information. We call our
general purpose representation language a stochastic
lambda calculus [Pless et al., 2000; Pless and Luger,
2001].

Representing Complex Knowledge and Skill:

A Control System for Particle Beam Accelerators

Human experts are remarkable for developing sophis-
ticated control behavior for operating in complex situa-
tions, such as handling heavy machinery, driving cars, or
flving ajrplanes. Over the past six years one of our
research groups has designed, built, and tested a portable,
inteiligent software system for accelerator beamline tun-
ing. Our approach to this problem has been general in that
our software is re-configurable to & wide variety of particle
beam accelerators. Our control architecture has a multiple
layer and hierarchical organization in which knowledge-
based decision making is used to re-configure lower level
optimization and control decisions [Klein et al., 1995,
2000} In many aspects this control software replicates the
skills of highly trained particle beam control physicists.

A particle beam accelerator is a device that is used to
transport highly charged particles from a source to a tar-
get. The beamline consists of a number of elements
designed either to change the beam’s characteristics (di-
rection, size, shape, etc.) or in some manner to monitor
these characteristics. The purpose of the beamline is to
steer, focus, and otherwise modify the beam so that it is
transported through the beam pipe to a specified location
all the while maintaining its characteristics within an
acceptable range. The final beam should reach the target
with a specific set of characteristics, as determined by the
work being done. Figure 9 shows a simple accelerator
beamline which includes trim magnets for steering, quad-

Brain Behav Evol 2002;5%:87-100 95
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rupole magnets for focusing, Faraday cups and stripline
detectors for measuring current, and profile and popup
monitors for measuring the size and position of the beam
[Klein, 1997; Klein et al., 1997a].

Accelerator beamlines are designed by placing various
components along the beam pipe to produce specific
effects. A good design will minimize the number of com-
ponents necessary to maintain acceptable beam condi-
tions while still aliowing enough freedom of control to
achieve a range of target conditions. Unfortunately, actual
systems rarely work exactly as designed. Problems arise
from imperfect beam production, remnant magnetic
fields, poorly modeled beam behavior, misplaced or
flawed control elements, and changes to the design and
use of the facility after it has been built. Even with many
built-in diagnostic tools such as beam profile monitors
and current detectors, the uncertainty of each situation
can make beamline control difficult.

Although most modern accelerator facilities have some
automated beamline tuning, normal operation still re-
quires manual intervention. Human controf experts need
to generate the initial start up tune of the beam. Some-
times, the non-expert controller will start the system and
then hand the tuning task over to the expert physicist for
fine calibration. The manual task of generating a proper
tune can be lengthy, taking many hours, if not days.

96 Brain Behav Evol 2002;59:87-100
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We began our project in particle beam control by
watching the human experts perform this task. We were
able to visualize with them the various models from phys-
ics they used to understand the data from the beam sys-
tem. We also observed them revising these models as the
system’s output changed over time. Owr approach to
building software for the accelerator control problem was
to employ the traditional object-oriented technology to
represent the objects in the physical world of accelerators
as software objects in our program. This allowed us, for

example, to create classes such as ‘magnets’, with sub- -

classes of ‘trim magnets’. Particular instances of trim
magnets would make up the entities that constituted the
full accelerator system of figure 9. In object-oriented tech-
nology, the general properties that make up a type of enti-
ty, magnets say, are brought together in a magnet class,
while the specifics of these classes are brought together
into one instance component. These specifics would in-
clude the parameters of a particular entity, including its -
location, power, etc. as well as its specific function in the
overall beam focusing scenario. An object-oriented view
of the accelerator tuning system can be seen in figure 10
[Klein, 1997; Klein et al., 1999].

At this level of abstraction, our control system allowed
us to reason out the beamline tuning problem by thinking
about how our “software objects’ fit together and inter-

Luger/Lewis/Stern



acted. We werg no longer faced with thousands of individ-
ual pieces of data that had to somehow be fit together
within a large program: rather we had software objects,
similar to the physical objects of figure 9, that it together
in specific ways to make a coherent picture. Our model
allowed our software to act as expert physicists might in
solving the tuning problem.

An important result of thinking about the tuning prob-
lem from this object-based viewpoint was the ease of soft-
ware component reuse. We were able to take a software
product that required several person months to build for
use at one accelerator facility (the Brookhaven AFT) and
to rebuild it in less than a person-week for use on another
beamline (the Argonne ATLAS facility). All that was
required was to reconfigure the existing objects to the par-
ticular situation at Argonne, and to add several new
objects that were particular to that new facility {Klein et
al., 1997a,b, 20001, - - - S SR

Our object system was also appropriate for creating
and testing various software models of a physical system.
The top-down hierarchical organization allowed us to
make hypothetical conjectures about a physical system
and then to test whether or not this hypothesized system
was actually reflected in the physical system we were
encountering at the time. This was a great assist for physi-
cists trying both to bring a beam into focus and/or
attempting to fine tune the resulting System. A planning
component of the system also supported the dynamic con-
figuring and testihg of an accelerator system. A repre-
- sentation of the hierarchically organized planning and
model-based views of our software can be seen in the top
and rightmost components of figure 10.

The planning component of the software allows the
human expert to generate planning sequences, in which
the computer organizes a sequence of actions that can
accomplish a specific task. For instance, if the focus of the
beam is to have a certain intensity at a specific location, a
particular plan can attempt to accomplish that task. The
model component of the software allows the human user
to understand the parameters of the system in the context
of a particular interpretation or model. For example,
allowing the expert to ask what a particular arrangement
of parameters might mean for the system. This supports
the continued adjustment of the system to accomplish
specific tasks.

An exciting result of our model theoretic approach was
the task of trim magnet location at the Argonne ATLAS
facility [Klein et al., 1997b]. Because of time, use, and the
changing parameters of the Argonne facility itself, the
exact location of one of their funing magnets was un-
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known. The fact that the precise location of a magnet
weighing several hundred pound could not be determined
is not as impossible as one might at first think. In fact,
many of these magnets are not accessible, buried beneath
the facility, and many of them actually change their loca-
tion, power, and field strength over time.

With our model refinement algorithm we were able to
re-establish the location and power parameters of this
magnet. Our model-based approach simply asked, over
repeated triais on the beamline, what model (or organiza-
tion of components) could account for the observed
behaviors; and in a relatively short time we were able to
determine the magnet’s parameters. What is really inter-
esting to consider in this situation is that we might not
have actually found the exact location of the magnet at all;
but for all the practical purposes represented by our set of
experiments and models, this location was a good encugh
fit. This is an important issue in the context of any intelli- -
gent agent attempting to understand and use its world:
what is ‘really out there’ and in what sense can/do we |
know and use ‘it’.

Finally, Stern and Lee [1999] have extended this mod-
el refinement approach with their work at the Stanford
Linear Accelerator Center. In what they describe as model
calibration they are able to refine through accelerator use
current supposed models to get a more precise fit to the
accelerator system; and calibrating the accelerator itself
makes it fit more closely to the physicists needs and
expectations for that system.

In this section we have seen several examples where
dynamic software models are used in the coniext of prob-
lem solving. With accelerator beamline tuning we consid-
ered the situation of a complex domain, where many of
the parameters are not directly observable and many com-
ponents interact in a highly non-linear fashion. A possible
model for a situation aliows the expert to ‘test’ the real: ‘Is
this the way things are, and if not, how can I adjust my
model for a better fit? In the final section of this paper we
propose model building and refinement as & critical epis-
temological construct.

Towards a Constructivist Epistemology

We have presented three examples of computational
intelligence. The goal in all three systems was to design
support architectures for agents’ better understanding and
use of their environments. In each case this required a
representational scheme, the mapnet for the robot, the
stochastic reflection of semiconductor failures for diagno-
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sis {the Bbn of figure 8), and a set of models of the physics
of the accelerator for tuning {figure 10). In each case these
representational schemes were sufficient to capture the
invariances of the problem domain for use in an agent’s
search for solutions.

These representations are not at all similar to the more
traditional approaches of the Al community that used
logic, frames, or other representational schemes. These
traditional approaches usually refiected the pre-inter-
preted and g priori worldviews of their system designers.
In our models, the commitment to an interpretation of
‘external’ phenomena, with its associated ‘confidence
measure” is made by the agent as it discovers and explores
its world. Qur evolving representations are a reflection of
the embodied agent exploring and using its world for its
own goals and purposes.

In support of this notion of the task-based or goal-driv-
en agent, each problem representation also possesses a
comfort or confidence measure, This measure is repre-
sented by the temperature of the Madcat system, the cor-
relation measures and solution confidences in stochastic
diagnosis, and the model refinement procedure of the
accelerator beam tuning algorithms. These measures re-
flect the confidence or ‘belief” that a system has with its
current view of the world, and is a critical support for
good enough problem solving. In fact, an agent rarely — if
ever — has perfect confidence in its perceptions and their
interpretation. For all agents in domains of mixed and
multipurpose goals, it is critical to have a prioritization
scheme that supports both the continued acquisition as
well as the eventual use of information.

But there are further issues important here, namely the
design philosophy that supports our approach to an agent
exploring, learning about, and using its world. This topic
- comes under hie general assumpticn of an epistemology.
that enables and supports an agent’s interaction with its
world. Qur epistemology is constructivist.

Long ago, Plato, in the words of the slave Meno, posed
the problem of how an agent is able to explore and learn
new knowledge about its environment:

And how can you enquire, Socrates, into that which you do not
already know? What will you put forth as the subject of the enguiry?
And if you find out what you want, how will you ever know that this
is what you did not know [Plato, 1961]?

Meno’s point is important, and not easily dismissed.
What IS something that you don’t know? And if you don’t
know a thing now, how can you ever recognize it later?
Plato answered this guestion with his ideas on reincarna-
tion and remembering. A constructivist addresses these
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issues by bringing to them modern concepts from psychol-
ogy, philosophy, and computation.

A constructivist epistemology hypothesizes that all un-
derstanding is the result of an interaction between energy
patterns in the world and mental categories imposed on
the world by an intelligent agent [Piaget, 1954, 1970: von
Glaserfeld, 1978)]. Using Piaget’s descriptions, we assimi-
late external phenomena according to our current under-
standing and accommodate our understanding to the ‘de-
mands’ of the phenomena.

Constructivists often use the term schemata to de-
scribe the a priori structures used to organize experience
of the currently present external world. This term is taken
from the British psychologist Bartlett [1932] and its philo-
sophical roots go back to Kant [1781/1964]. In this view-
point, observation is not passive and neutral, but active
and interpretative. In our examples of computational
problem solvers the role of ‘schema’ is taken by the map-
net, the Bayesian belief network, and the models support-
ing beamline tuning. These schemas are reactive and
evolve because of their links and interactions with other
system components as well as the ‘outside’ world.

Perceived information, Kant’s a posteriori knowledge,
seldom fits precisely into our preconceived-and a priori
schemata. From this tension, the schema-based biases the
subject uses to organize experience are either modified or
replaced. The need for accommodation in the face of
unsuccessful interactions with an environment drives a
process of cognitive equilibration. Thus a constructivist
epistemnology is fundamentally one of cognitive evolution
and refinement. An important consequence of consiruc-
tivism is that any interpretation involves the imposition
of the observers’ concepts and categories on reality.

When Piaget [1954, 1970] first proposed a constructiv-
ist approach to understanding, he called it genetic.episte- .
mology. The lack of a comfortable fit of the present sche-
mata to the world ‘as it is’ creates a cognitive tension. This
tension drives a process of schema revision. Schema revi-
sion, Piaget’s accommodation, is the continued evolution
of an agent’s understanding towards eguilibration.

Schema revision and continued movement towards
equilibration is a genetic predisposition and accommoda-
tion of a system to the structures of society in an ‘external’
world. It combines both of these forces and reflects an
embodied predisposition for survival. For humans, sche-
ma modification is both an a priori expression of our
genetics, as well as an a posteriori function of society and
the world. It reflects the embodiment of a goal-driven
agent, of a being in space and time.
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There 1s a.blending here of the empiricist and rational-
ist traditions, mediated by the goals of agent and societal
survival. As embodied, agents can comprehend nothing
except that which first passes through their senses. As
accommodating, agents survive through learning the gen-
eral patterns of an external world. What is perceived is
mediated by what is expected, what is expected is in-
fluenced by what is perceived. These two functions can
only be understood in terms of each other, and both of
them are modulated by the exigencies of survival, of a
‘good encugh’ response.

Furthermore, this accommodation is seldom conscious
or rational, nor are agents often aware of the schemata
that support interaction with the environment: rather it is
the spontaneous response of an embodied and goal-driven
system. Accommodation is constitutive of equilibration
with the world, it supports learning and all adjustments to
arf environmenit, but it is rarely a perceptible element of
conscious mental life. In fact, as sources of bias and preju-
dice both in science and society, we are more often than
not unaware of the content of our g priori schemata.

Finally, why is a constructivist epistemology particu-
larly useful for addressing the problems of understanding
intelligence itself? How can an agent in an environment
understand its own understanding of that environment?
We believe that constructivism addresses the epistemo-
logical access problem in philosophy and psychology. For
well over a century, there has been a struggle in both these
disciplines between two factions, the positivist, which
proposes to infer mental phenomena from observable
physical behavior, and a more phenomenological ap-
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